Automating Cancer Registration Challenges and Opportunities

Lynne Penberthy MD, MPH IACR Meeting September 17, 2007

Topics to be covered

- □ Current challenges in cancer registration
- □ Potential opportunities for cancer registration using electronic data and automation
- ☐ An example of cancer registration using electronic data and automation

Cancer Registration Challenges

- □ Data quality
- □ Data completeness
- □ Data overload Information deficit
- □ Data consolidation dilemmas
 - Geographic dispersion of health care
 - Lengthy course of treatment

Challenge 1: Data Quality

Transcription and data entry errors

- Medical Record Number, personal identifiers, dates etc
 - May cause mismatch in case ascertainment details and follow up
 - ☐ May cause mismatch in consolidation at the central level

Challenge 2: Data Completeness

Data from non-hospital locations for:

- □ Incident Cases
- □ Initial Treatment
- □ Follow Up
- missed without good consolidation and comprehensive reporting at the local and central level

Challenge 2: Data Completeness for Incident Cases

Studies of incomplete reporting suggest that missed cases may represent biases in reporting¹⁻⁴

- □ Rural, underserved populations
- □ Cases from *non-registry* hospitals
- ☐ Cases diagnosed and treated in physician offices

- 1. McClish DM and Penberthy LT.; 2005.
- 2. Penberthy LT, McClish DK, 2005.
- 3. McCLish, DK, Penberthy LT. "2004
- 4. Penberthy LT, McClish. 2003

Challenge 2: Data Completeness for Treatment

- □ Cancer registries have limited sensitivity for chemotherapy capture (56-72%)¹⁻³
- ☐ Studies suggest that missed treatment may represent biases based on reporting source and location
 - Increased use of chemotherapy in the outpatient or physician office setting
 - 1. Malin 2002 (Breast)
 - 2. Cress 2003 (Breast)
 - 3. Du 2006 (Colorectal)

Challenge 2: Data Completeness for Treatment

- ☐ Hormonal Therapy and Chemotherapy received as oral agents
 - Increased use of oral chemotherapy as mainstay for cancer treatment will raise additional challenges in chemotherapy capture
 - □ Likely purchased from pharmacy
 - □ No mandate to report (in US)

Challenge 3: Data Overload

Increasing data volume & information sources within a single institution require registrars to:

- Abstract information received at various times over the course of treatment
- Match & extract data from multiple reports to a single patient

Challenge 4: Data Consolidation

- Collating information from more than one location:
 - Inpatient facilities
 - Physician offices
 - Free standing radiation therapy centers
 - Free standing surgery centers
- Sharing patient information with colleagues at multiple institutions

How do these challenges impact cancer surveillance?

- Biased & incomplete reporting of cases, treatments and outcomes
- □ Result in incomplete or erroneous case reports & statistics
- □ Raise questions on validity of analytic results

How do these challenges impact cancer surveillance?

Biased & incomplete reporting of cases, treatments and outcomes

- □ Limit the utility for outcomes assessments and research
 - Incomplete treatment for comparing differential outcomes
 - Incomplete outcomes ascertainment beyond survival
 - □ Recurrences, treatment of recurrences
- □ Limit the utility for clinical or public health purposes
 - Population comparisons such as rural, underserved or minorities data are difficult
 - Cancer survivorship

What can we do to maintain viability?

- □ Increase the value of registries
 - Enhance currency of data
 - Enhance completeness of information for clinical & public health use
- □ Improve cost benefit
 - Registries at both the hospital & central level are not revenue centers
 - Enhancing the efficiency or decreasing the cost will improve support

What can we do to maintain viability?

- □ To accomplish this formidable task I would propose that we need to rethink:
 - Data collection methods
 - Data elements we collect

A possible solution: Automate and maximize the use of available electronic data

Automation possibilities: Improving efficiency & data quality

- Reduce direct data entry & transcription errors through:
 - SELECTIVE Automated upload and longitudinal capture of standardized patient specific data

Automation possibilities: Improving efficiency

Reduce the amount of paper handling required

Automation possibilities: Improving efficiency & security

- ☐ Make data exchange between registries more efficient, secure and complete
 - Sharing data electronically can be done in a secure manner
 - □ meeting electronic health data exchange standards such as HIPAA
 - Reducing the number of letters, telephone calls that are required for information gathering

Automation possibilities: Reducing data overload/Improving consolidation

- □ Automate the consolidation of information
 - from multiple data sources & locations
 - updating information *over time* to create longitudinal sets of records for each patient

Automation possibilities: Increasing the value of registries

- □ Enhancing data completeness without adding to the registrars workload for:
 - Treatment
 - Recurrence & Subsequent Treatment
 - Comorbidity
- □ Improving timeliness
 - Using automated case finding for "real time" reporting
 - Automated update of treatment as it is completed.

Automation possibilities: Increasing the value of registries

- □ Increasing the clinical and/or public health value of cancer registries by:
 - Including new data that represent important clinical information not currently collected
 - □ Available electronically
 - □ Without adding work to the registry staff

An example of the clinical need for new data

There are 10.5 million *cancer survivors* (in the US) estimates reaching 20 million by 2015

- □ Survival time is no longer sufficient as the sole outcome measure
 - Survivors have multiple recurrences and treatment
 - Registries do not capture this information
 - □ Precluding the ability to monitor possible complications from chemo
 - □ Or identifying new complications of treatment over time

What might be done?

An example

The Automated Cancer Extraction (ACE©)

A software system for using electronic data and automation to support cancer registration¹

¹Software development supported in part by:

Centers for Disease Control & Prevention National Cancer Registry Program (Modeling Electronic Registry Project (MERP)) and National Cancer Institute

ACE© Goals

- □ Enhance efficiency & reduce costs
- □ Enhance the quality and depth of data
 - Automate capture & upload data
 - Capture increased data details for clinical relevance

Underlying Principles for ACE[©]

- ☐ Uses standardized electronic message formats where feasible (HL7)
- □ Standardized data formats where feasible (ICD-9 (10), Snomed)
- □ EMR Platform independent but compatible
- Extensible
- ☐ Flexible modular design able to integrate multiple electronic message and data formats

ACE[©]- What does it do?

Process manager of electronic data

- □ Parses the data into meaningful information
- □ Screens each message or report for cancer relevance based on user-defined text strings and codes
 - to identify new cancers
 - to provide follow up information on known cancer cases
 - to *automatically* capture detailed information on treatment
- □ Links all reports at the patient level and stores the data longitudinally

ACE© - Added Value

Automation of data capture & consolidation permits registrars to:

- Evaluate linked information from many sources simultaneously to inform decision-making
- Maintain source information in a readily accessible system for QA, documentation and for audit purposes
- Consolidated clinical data repository for longitudinal source data for research projects

Electronic Data Sources Feeding ACE ©

- □ Pathology reports
 - Surgical (HL7 synoptics)
 - Clinical (laboratory tests)(Excel)
- □ Claims (Billing data)
 - 837 files (+UB92 & CMS 1500- physician data)

- □ Other HL7 reports
 - Discharge summaries
 - Radiology reports
 - Operative reports
 - Clinical/Physician notes-Oncology, Radiation, Endoscopies

- ☐ Has the capability to receive other formats
 - Access files
 - Excel Files
 - SQL Server data
 - Word documents (in process)

Automation opportunities: ACE © Example 1

- ☐ Using Nontraditional electronic data sources to enhance registry completeness, detail and timeliness
- □ Electronic billing data

Automation opportunities: ACE © Example 1 (cont.)

- □ Electronic billing data
 - Standardized formats for Inpatient and Outpatient data
 - □ Permit auto-capture & upload of data with minimal effort to the registrars
 - Provide detailed longitudinal information on:
 - Initial treatment
 - Treatment of recurrent disease
 - Comorbidity information

Automation opportunities: ACE © Example 1 (cont.)

Validity of Billing data for treatment

■ Studies demonstrate high sensitivity & validity ranging from 88 – 97% ¹⁻⁴

- 1. Warren 2002 (POC/MC: Breast/Colon/Rectum/Ovary)
- 2. Du 2006 (MC: Breast)
- 3. Lamont 2005 (CALGB/MC: Breast/Lung)
- 4. Penberthy 2004 (Br/Lung/CRC/Prostate)

Automation opportunities:

ACE © Example 2

- ☐ Using Nontraditional electronic data sources to enhance registry completeness, detail and timeliness
- □ Clinical laboratory test results
 - Hematologic disease (WBCs, Differential, HgB etc)
 - Serial markers of disease status

Automation opportunities: ACE © Example 2 (cont.)

Clinical Laboratory Test Results:

- □ Markers for comorbidity
 - □ Renal function
 - □ Liver disease
 - Compromised immune system
 - Clinical relevance
 - Implications for treatment choices
- □ Longitudinal "real time" identification of recurrence using Tumor Marker values

Automation opportunities: ACE © Example 3

Auto-population of abstract fields:

- Demographic information from multiple sources
- ☐ Treatment information from CPT and ICD-9 procedure codes
- □ Comorbidity information from billing data
- □ Follow up data including:
 - Recurrence
 - Treatment for recurrence
- □ Cancer histopathology data from surgical pathology synoptic reports

ACE Automation: The Need for Checks and Balances

- □ Review and acceptance by a registrar for critical fields
 - In the cancer abstract
 - Follow up to ascertain recurrence vs second primary cancer

Automation possibilities: Validity and Efficiency of ACE ©

 Can automation make us more efficient?

Can the data be valid and reliable?

Efficiency: ACE Message Auto-Processing Capacity, 2006

Pathology Reports				
	Processed	27,285		
	Auto-Filtered	21,480	78.72%	
	Reviewed	5,805		
Other Reports				
	Processed	63,313		
	Auto-Filtered	53,570	84.60%	
	Reviewed	9,743		
Billing Messages				
	Processed	116,058		
	Auto-Filtered	101,821	87.70%	
0	Reviewed	14,237		

ACE[©] Efficiency Study Results

- □ Screening & entering into Suspense of ~2500 patients based on surgical pathology reports
 - □ Manual: approximately 12 hours
 - □ ACE: 1.5 hours
 - □ ACE Identified 9 accessionable cases *missed manually*
 - □ Eliminated 11 typing transcription errors
- □ Reduced average abstraction time from 1.25 hours/case to 0.5 hours per case

Measures of Accuracy for Casefinding Automated vs. Manual Process

Based on Pathology reports only July 2006

	ACE	Manual	
	ACE	Process	
Sensitivity	100%	77%	
Specificity	99%	99%	
PVP	79%	87%	

Measures of Accuracy/ Effort: False Positives & Overall Predictive Value Positive Rate

- □ Total "False Positives" 751 Patients in 2006
 - ACE reported probable cases but not accessionable
- □ "False Positives" Cancer but not reportable= 477 (63%)
 - 449 Non-reportable skin or other cancers
 - 13 History of cancer/in remission
 - 15 cancer history not previously reported

Measures of Accuracy/ Effort: False Positives & Overall Predictive Value Positive Rate

- \square True "false positives" (not cancer) = 274
 - □ 135 wi incidental positive cancer "term"
 - □ 27 wi positive family history of cancer (corrected)
 - □ 107 Rule out cancer (ICD-9 Dx)
 - □ 5 Typos in report
- □ Predictive Value Positive for all data ACE data sources =3438/(274 +3438) (93%)

In summary

- □ Cancer Registration must increase its value by:
 - Increasing the clinical relevance of cancer data
 - Enhancing data completeness and detail
 - Maintaining or improving efficiency of data collection while:
 - □ Reducing cost
 - □ Improving timeliness

In summary

- ☐ The increasing availability of electronic data provides an opportunity to meet those challenges
- □ Judicious use of electronic data & automation coupled with ongoing human review offers significant advantages to current cancer registration processes

Thank you!

For an electronic copy

Email: lpenbert@vcu.edu

□ Extra slides

ACE Processes for scanning electronic data for automated capture and upload to registry.

Electronic Data

837 Files

• Inpatient and Outpatient transmission to insurers

HL7 Messages

- Discharge Summary
- Radiology
- Operative Report
- Surgical Pathology

CSV Files

- Clinical Pathology
- Tumor Markers

ACE Process Manager

Cancer relevant term/code?

YES

- Match with registry for Existing case for FU or
- Identify as possible new case NO
- Auto-filter & store in data
 warehouse

Cancer or Rx term:

Presented to registrar for review/acceptance

Existing case:

Follow Up info auto -uploaded

Registrar:

- Deletes non-reportable case
- Automated Suspense entry
- Automated abstract initiated
- •Treatment detail captured

Challenge 5: Limited Skilled Workforce

- Aging work force
- Limited recruitment of new certified staff
 - primarily US problem
- Tedious routines and extensive clerical chores
 - Reduces efficiency
 - Difficult to maintain qualified personnel at low skill levels

Automation possibilities: Extending a limited workforce

Automation stretches resources by:

- □ Reducing clerical tasks to reduce boredom
- Likely more appealing to the computer literate generation unwilling to perform clerical functions required in traditional registrations processes